AAAI Fall Symposium 2023 on Artificial Intelligence for Synthetic Biology Imperial College London

AI-4-EB Consortium

A Comprehensible Framework to Active Learning Genome-Scale Metabolic Networks

Lun Ai¹, Shishun Liang², Stephen H. Muggleton¹, Geoff S. Baldwin²

¹Department of Computing, Imperial College London, UK ²Department of Life Science, Imperial College London, UK

^{lun.ai15@imperial.ac.uk}

How do we enhance Synthetic Biology platform for real-world solutions?

Traditional approaches are **not scalable**

Aromatic amino acid metabolic Network (17 genes)

Robot Scientist (King et al. Nature 2004)

Can we efficiently navigate and learn genome-scale metabolic networks?

iML1515 (Monk et al. 2017), **<u>1515</u>** genes + **<u>2719</u>** reactions **<u>with room to improve</u>**

Foundation for **next generation** Synthetic Biology

A Symbolic AI platform for discovery (ILP-iML1515)

• Logical reasoning engine

- Active selection of experiments
- Recovering gene functions
- Remarks

Use Inductive Logic Programming (ILP) for navigation and learning

Logic programs

metabolic_step(m1, m3). metabolic_step(m1, m4).

% static knowledge

codes(gene_b, e_b).

codes(gene_c, e_c).

codes(gene_e, e_e).

enzyme(e_a, m1, m3). enzyme(e_b, m1, m4). essential_molecule(m7). essential_molecule(m8). % description of effect using metabolic network phenotypic_effect(Gene, Medium):-% abduced fact codes(Gene, Enzyme), cant_use_enzyme(Enzyme), %metabolic pathways metabolic_pathway(Medium, Metabolites), no_essential_molecule(Metabolites).

Human-comprehensible

Abduction

"Logical inference that seeks the best conclusion that explains observations"

- Phenotypes: gene knockouts in various nutrient media
- Hypothesis: of <u>gene functions</u> to explain data
- Simulation: hypothetical phenotypic observations

Accelerated simulation (> 4000 times speed up)

- Logical reasoning engine
- Active selection of experiments
- Recovering gene functions
- Remarks

Active learning

Binary discrimination of the candidate hypotheses

Experiment selection = Playing "Yes/No" game

Experiment sample and hypothetical outcomes

Phenotypic effects when we assume H _i is true	e1	e2	e3
H1	0	0	0
H2 (target hypothesis)	1	1	0
H3	0	1	0

by identifying a (near-)optimal **binary tree**

- Logical reasoning engine
- Active selection of experiments
- <u>Recovering gene functions</u>
- Remarks

Active learning known gene functions: lower cost

Isoenzyme identification

C

2.00

1.75

1.50

1.25

dole 0 1.00

0.75

0.50

0.00

2.5

5.0

7.5

10.0

12.5

Time (h)

15.0 17.5

20.0

22.5

Metabolite

trytophan

tyrosine shikimate

- no metabolite

phenylpyruvate

CRISPRi

gRNA targets dCas9 to silence target genes in *E. coli* genome

WT+gRNA tyrB

Synergistic deactivation of TyrB & AspC

Isoenzyme recovery

- Remove isoenzyme association of tyrB with aspC
- Hypotheses (1089)
 - 33 distinct enzyme functions and a library of 33 genes
- Training dataset
 - Double-knockout (synthetic data, 3696)
 - Single-knockout (online experimental data, 231)

Active learning isoenzyme (tyrB): fewer data usage

- Logical reasoning engine
- Active selection of experiments
- Recovering gene functions
- <u>Remarks</u>

Future work

- Generalisation of ILP-iML1515
 - Quantification of metabolite concentration
 - Introduction of regulatory interactions
- Knowledge transfer
 - Helping people comprehend biological concepts
 [Muggleton et al., 2018]

Enhance automation of discovery

- Overcome network **complexity**
 - > 4000+ times better runtime
- Active selection of experiments (ASE)
 - 10-fold saving in cost
 - Use fewer training data
- Can target **errors** in SOTA metabolic networks
 - Remain efficient for multi-knockouts

What people think I do ...

This is what I actually do ...

This is what I actually do ...

What are biologists actually doing?

Pathway analysis

Experimentations

Understanding AI models

Our vision is to bridge ...

Human-Comprehensible AI and Synthetic Biology

Imperial College London

Lun Ai

Email: lun.ai15@imperial.ac.uk

Website: https://lai1997.github.io/

Linkedin: https://www.linkedin.com/in/lun-ai-46481a128/