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How do we enhance Synthetic Biology platform for real-world solutions?

SolutionsPlatform



Robot Scientist (King et al. Nature 2004)

m1 + m2↔m3 + m4

Aromatic amino acid 
metabolic

Network (17 genes)

Traditional approaches are not scalable



Can we efficiently navigate and learn genome-scale metabolic networks?

iML1515 (Monk et al. 2017), 1515 genes + 2719 reactions with room to improve
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Foundation for next generation Synthetic Biology
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A Symbolic AI platform for discovery (ILP-iML1515)

Lab



● Logical reasoning engine

● Active selection of experiments

● Recovering gene functions

● Remarks
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% static knowledge

codes(gene_b, e_b).

codes(gene_c, e_c).

codes(gene_e, e_e). 

… 

metabolic_step(m1, m3).

metabolic_step(m1, m4). 

…

enzyme(e_a, m1, m3).

enzyme(e_b, m1, m4). 

essential_molecule(m7).

essential_molecule(m8).

% description of effect using metabolic network

phenotypic_effect(Gene, Medium):-

% abduced fact

codes(Gene, Enzyme),

cant_use_enzyme(Enzyme),

%metabolic pathways

metabolic_pathway(Medium, Metabolites),

no_essential_molecule(Metabolites).

Use Inductive Logic Programming (ILP) for navigation and learning

Human-comprehensible

Logic programs



● Phenotypes: gene knockouts in various nutrient media

● Hypothesis: of gene functions to explain data

● Simulation: hypothetical phenotypic observations 

Data (discrete, binary)

phenotypic_effect(Gene, Nutrients)

Hypothesis

codes(Gene, Enzyme)

Simulation:

Confirmation/Refutation

Abduction

“Logical inference that seeks the best 
conclusion that explains observations” 



Time per simulation
Without
Binary

Matrices

With
Binary

Matrices

Without 
multi-threads ≈250s ≈0.6s

With multi-threads
20 cpus  ≈27s ≈0.06s

HTCondor HPC
10 nodes - ≈0.016s

Exhaustive 

Synthetic library

7 Million data (6 media)

Accelerated simulation (> 4000 times speed up)

Boolean matrices



● Logical reasoning engine

● Active selection of experiments

● Recovering gene functions

● Remarks



Active learning

Binary discrimination of the candidate hypotheses

Experiment selection = Playing “Yes/No” game

H0

e3 e5

H1 H2



Phenotypic effects when we 
assume Hi is true

e1 e2 e3

H1 0 0 0

H2 (target hypothesis) 1 1 0

H3 0 1 0 e1

H2e2

H1 H3

0 1

0 1

1

1

0
e3

e2

H1 e1

H3 H2

0

0

Experiment sample and hypothetical outcomes

Logarithmic reduction of candidate hypotheses

by identifying a (near-)optimal binary tree



● Logical reasoning engine

● Active selection of experiments

● Recovering gene functions

● Remarks
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gene functions



Active learning known gene functions: lower cost 

10 times saving in cost



Isoenzyme identification

CRISPRi

dCas9

Synergistic deactivation of TyrB & AspC

gRNA targets dCas9 to silence 
target genes in E. coli genome



Isoenzyme recovery

● Remove isoenzyme association of tyrB with aspC

● Hypotheses (1089)
○ 33 distinct enzyme functions and a library of 33 genes

● Training dataset
○ Double-knockout (synthetic data, 3696)

○ Single-knockout  (online experimental data, 231)



Active learning isoenzyme (tyrB): fewer data usage



● Logical reasoning engine

● Active selection of experiments

● Recovering gene functions

● Remarks



● Generalisation of ILP-iML1515

○ Quantification of metabolite concentration

○ Introduction of regulatory interactions 

● Knowledge transfer

○ Helping people comprehend biological concepts 

[Muggleton et al., 2018]

Future work



Enhance automation of discovery

● Overcome network complexity

○ > 4000+ times better runtime

● Active selection of experiments (ASE)

○ 10-fold saving in cost

○ Use fewer training data

● Can target errors in SOTA metabolic networks

○ Remain efficient for multi-knockouts



What people think I do …



This is what I actually do … 



This is what I actually do … 

What are biologists actually doing?

Pathway analysis

Experimentations

Understanding AI models



Our vision is to bridge …  

Human-Comprehensible AI and Synthetic Biology
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