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Which task would you first select to teach children? 

Arrange fruits of different weights by merge sort



Using machine learned output for knowledge transfer

Ultra-Strong Machine Learning (USML) [Michie, 1988]

● ML outputs in symbolic representation 

● The output can be taught to humans whose performance can 

increase to a level beyond learning from training examples 



Background BK: {   father(john,susan). parent(susan,sam). }

Examples E+: {   grandfather(john,sam).  }

Hypothesis H: { grandfather(X,Y) :- father(X,Z), parent(Z,Y). }

USML and Inductive Logic Programming (ILP)

The world’s 1st demonstration of USML is in ILP [Muggleton et al., 2018]

BK U H should cover E+ and none of E-



Are logic programs from ML suitable for knowledge transfer?

No guidance Full guidance

Minimal guidance curriculum



● Learning merge sort via ILP

● Teaching merge sort

● Comprehension assessment

● Empirical results

● Remarks



Background BK: {   father(john,susan). parent(susan,sam). }

Example E+: {   grandfather(john,sam).  }

Higher-order Meta-rule M: { P(X,Y) :- Q(X,Z), R(Z,Y). }

Hypothesis H: { grandfather(X,Y) :- father(X,Z), parent(Z,Y). }

ILP: Meta-Interpretive Learning

BK U H should cover E+ and none of E-

and instantiate M

Can learn recursive logic programs and invent new predicates!



A variant of bottom-up merge sort [Goldstine & Neumann, 1963]

Input:

[4, 6, 5, 2, 3, 1] 

After Iteration 1

[4 < 6, 2 < 5, 1 < 3]

After Iteration 2

[2 < 4 < 5 < 6, 1 < 3]

After Iteration 3

[1 < 2 < 3 < 4 < 5 < 6]

merger(A,B):-parse_exprs(A,C),merger_1(C,B).

merger_1(A,B):- compare_nums(A,C),merger_1(C,B).

merger_1(A,B):-compare_nums(A,C),drop_bag_remaining(C,B).

sorter(A,B):-merger(A,C),sorter(C,B).

sorter(A,B):-recycle_memory(A,C), sorter(C,B).

sorter(A,B):-single_expr(A,C), single_expr(C,B).

Produced by a Meta-Interpretive 
Learning system Metagol
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● Teaching merge sort

● Comprehension assessment

● Empirical results
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A case study: teach Merge Sort to human novices

Incremental



2x2 Experimental design

<1> With explanations 

<2> Only examples

(a) Merge-then-sort

(b) Sort-then-merge



Learning to merge via multiple-choice questions



Explanations: why is/isn’t an action optimal?

The correct action sequence 

A revision 



Learning to sort through explorations



● Learning merge sort via ILP

● Teaching merge sort

● Comprehension assessment

● Empirical results

● Remarks



Ultra-strong ML -> human behavioural change 

Explanatory effect = 

machine-aided task performance - self-learning task performance

Machine-aided: with explanations (e.g. generated from LP)

Self-learning: with only training examples

Performance: predictive accuracy on unseen tests

[Ai et al., 2021]



Evaluating human sorting performance

Spearman rank correlation coefficient [Spearman, 1904]:

Non-parametric test of the monotonicity between the rank values 
of two variables X, Y

E.g. X: [1, 2, 3, 4, 5, 6]

Y1: [4, 6, 5, 2, 3, 1] Y2: [1, 2, 6, 3, 4, 5]

𝝆(X,Y1) < 𝝆(X,Y2)



Effect of curriculum on task T = 

Performance of T in (a) - Performance of T in (b)

Comparing between different curriculum order



Can we identify human sorting strategy?

Sequence [4, 6, 5, 2, 3, 1]

Human trace:

[(6, 4), (5, 2), (3, 1), (4, 2), (5, 4), (6, 5), (2, 1), (3, 2), (4, 3)]

Machine trace (24 algorithms, 6 categories):

[(4, 6), (5, 2), (2, 4), (4, 5), (5, 6), (3, 1), (1, 2), (2, 3), (3, 4)]

There are 21 possible pairs (symmetric pairs are considered identical). 



An example of trace-based evaluation

Spearman rank correlation ρ =.9 and p < .001

Step 1: Identify common/different pairs via 𝟀2

Step 2: Rank algorithms via spearman rank correlation

(Added 1s to avoid zero cells) 

Not in human trace In human trace

Not in machine trace 13 1

In machine trace 1 10

𝟀2 = 14.3 with p < .001
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Cognitive window for a machine-learned logic program P

Axiom 1: Hypothesis space to necessarily learn P must be small

Humans have limited search ability in the hypothesis space

Axiom 2: P has “shortcuts” to reduce grounding cost

Humans have limited capacity for mental computations

[Ai et al., 2021]



Merge-then-sort learning reduces total hypothesis space size

ρ

Improved performance

(supports Axiom 1)



Explanations contain no “shortcuts” to merging

ρ

No performance differences

(supports Axiom 2)



Effects of Incremental learning with explanations

Increased application of quick sort like algorithms 

=> higher performance than other approaches



Explanations contextualise the binary selection concept 

(quick sort, dictionary sort)

Impact of explanations on performance 



Incremental curriculum helps reduce hypothesis size for learning 

divide-and-conquer algorithms (quick sort, merge sort)

Impact of incremental curriculum on strategy adaptation



● Learning merge sort via ILP

● Teaching merge sort
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Learning merge sort is a challenging task



While we took a minimalist approach,

● teaching Iogic programs can lead to remarkable re-discoveries

● incremental learning and explanations had a USML potential

● results supported the cognitive window

Concluding remarks



● Beyond ILP and noise-free framework

● Two-way learning via behavioural cloning

● Curricula and optimisations for human discovery

Future work
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