The 3rd International Joint Conference on Learning & Reasoning (IJCLR), Bari, Italy

TAILOR

Explanatory machine learning for sequential human teaching

Lun Ai¹, Johannes Langer², Stephen Muggleton¹, Ute Schmid²

¹Department of Computing, Imperial College London, UK ²Faculty of Information Systems and Applied Computer Sciences, University of Bamberg, Germany The 3rd International Joint Conference on Learning & Reasoning (IJCLR), Bari, Italy

TAILOR

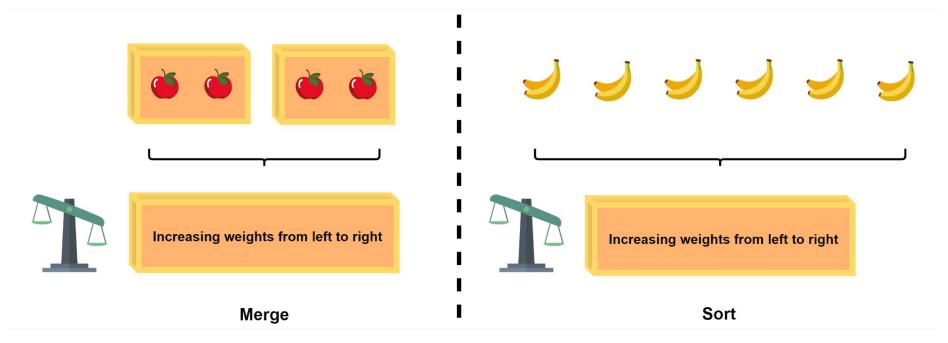
Explanatory machine learning for sequential human teaching

Lun Ai¹, Johannes Langer², Stephen Muggleton¹, Ute Schmid²

¹Department of Computing, Imperial College London, UK ²Faculty of Information Systems and Applied Computer Sciences, University of Bamberg, Germany

Which task would you first select to teach children?

Arrange fruits of different weights by merge sort



Using machine learned output for knowledge transfer

Ultra-Strong Machine Learning (USML) [Michie, 1988]

- ML outputs in **symbolic** representation
- The output can be taught to humans whose performance can increase to a level beyond learning from training examples

USML and Inductive Logic Programming (ILP)

Background BK:

Examples E+:

Hypothesis H:

father(john,susan). parent(susan,sam). }

grandfather(john,sam). }

grandfather(X,Y) :- father(X,Z), parent(Z,Y).

BK U H should cover E+ and none of E-

The world's 1st demonstration of USML is in ILP [Muggleton et al., 2018]

Are logic programs from ML suitable for knowledge transfer?

Minimal guidance curriculum

No guidance

Full guidance

• Learning merge sort via ILP

- Teaching merge sort
- Comprehension assessment
- Empirical results
- Remarks

ILP: Meta-Interpretive Learning

- Background BK:
- Example E+:
- Higher-order Meta-rule M:
- Hypothesis H:

- father(john,susan). parent(susan,sam). }
- grandfather(john,sam). }
- P(X,Y) :- Q(X,Z), R(Z,Y). }

grandfather(X,Y) :- father(X,Z), parent(Z,Y). }

BK U H should cover E+ and none of E-

and instantiate M

Can learn recursive logic programs and invent new predicates!

{

{

A variant of bottom-up merge sort [Goldstine & Neumann, 1963]

```
merger(A,B):-parse exprs(A,C),merger 1(C,B).
```

merger 1(A,B):- compare nums(A,C),merger 1(C,B).

merger_1(A,B):-compare_nums(A,C),drop_bag_remaining(C,B).

```
sorter(A,B):-merger(A,C), sorter(C,B).
```

```
sorter(A,B):-recycle memory(A,C), sorter(C,B).
```

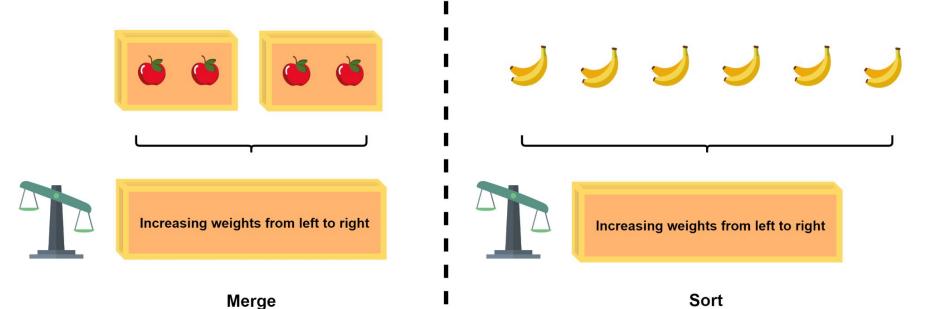
sorter(A,B):-single_expr(A,C), single_expr(C,B).

Produced by a Meta-Interpretive Learning system *Metagol*

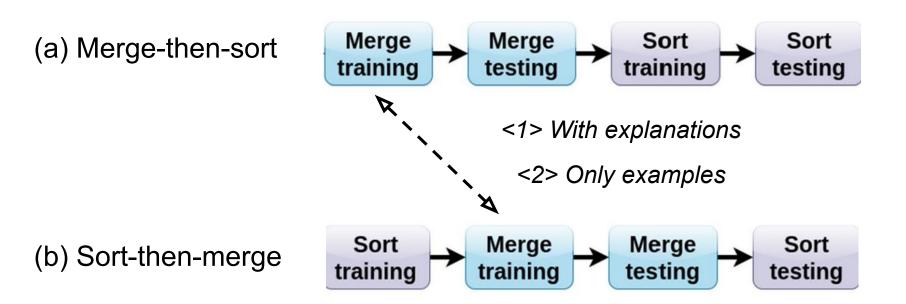
Input: [4, 6, 5, 2, 3, 1] After Iteration 1 [<u>4 < 6</u>, <u>2 < 5</u>, <u>1 < 3</u>] After Iteration 2 [<u>2 < 4 < 5 < 6</u>, 1 < 3] After Iteration 3 [1 < 2 < 3 < 4 < 5 < 6]

- Learning merge sort via ILP
- <u>Teaching merge sort</u>
- Comprehension assessment
- Empirical results
- Remarks

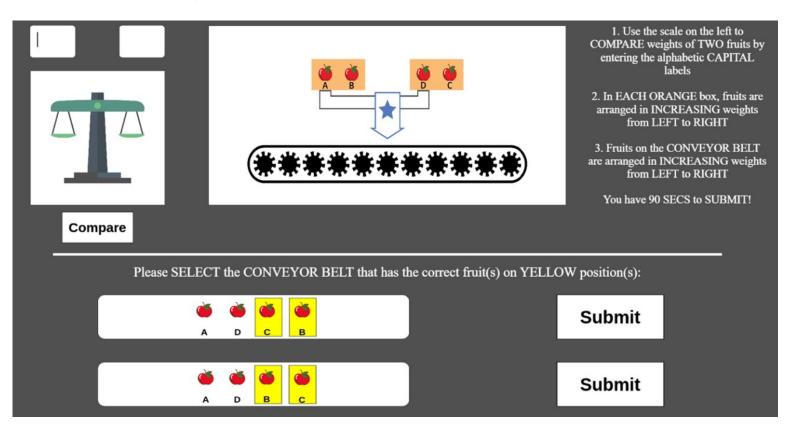
A case study: teach Merge Sort to human novices



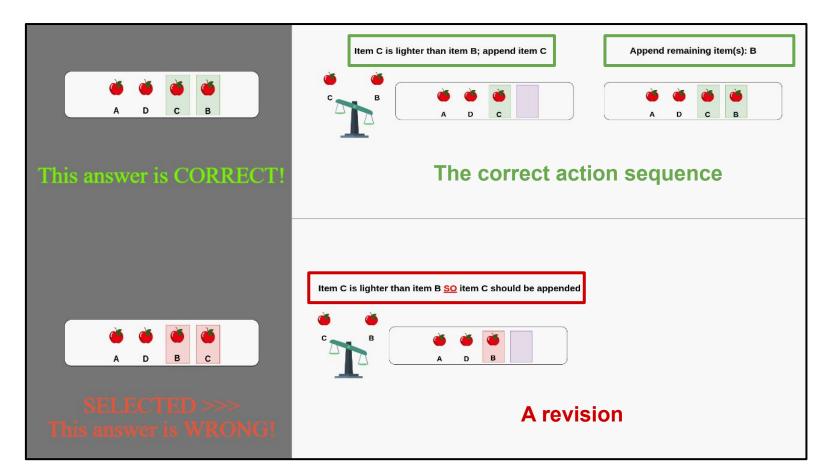
2x2 Experimental design



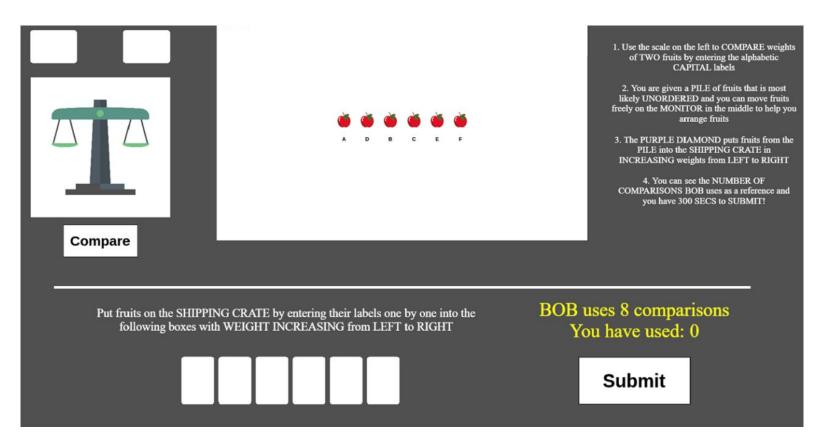
Learning to merge via multiple-choice questions



Explanations: why is/isn't an action optimal?



Learning to sort through explorations



- Learning merge sort via ILP
- Teaching merge sort
- <u>Comprehension assessment</u>
- Empirical results
- Remarks

Ultra-strong ML -> human behavioural change

Explanatory effect =

machine-aided task performance - self-learning task performance

Machine-aided: with explanations (e.g. generated from LP)
Self-learning: with only training examples
Performance: predictive accuracy on unseen tests

Evaluating human sorting performance

Spearman rank correlation coefficient [Spearman, 1904]:

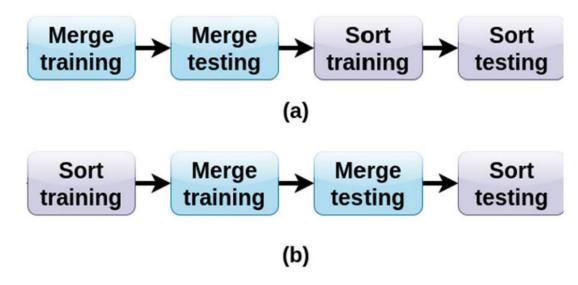
Non-parametric test of the **monotonicity** between the **rank values** of two variables **X**, **Y**

 $\operatorname{cov}(\operatorname{R}(X),\operatorname{R}(Y))$

 $\sigma_{\mathrm{R}(X)}\sigma_{\mathrm{R}(Y)}$

E.g. X: [1, 2, 3, 4, 5, 6]

Υ1: [<u>4</u>, 6, 5, <u>2</u>, 3, 1] $\varrho(\textbf{X}, \textbf{Y1}) < \varrho(\textbf{X}, \textbf{Y2})$ Comparing between different curriculum order



Effect of curriculum on task T =

Performance of T in (a) - Performance of T in (b)

Can we identify human **sorting strategy**?

Sequence [4, 6, 5, 2, 3, 1]

Human trace:

[(6, 4), (5, 2), (3, 1), (4, 2), (5, 4), (6, 5), (2, 1), (3, 2), (4, 3)] Machine trace (24 algorithms, 6 categories):

[(4, 6), (5, 2), (2, 4), (4, 5), (5, 6), (3, 1), (1, 2), (2, 3), (3, 4)]

There are <u>21</u> possible pairs (symmetric pairs are considered identical).

An example of trace-based evaluation

Step 1: Identify common/different pairs via χ^2

	Not in human trace	In human trace
Not in machine trace	13	1
In machine trace	1	10
	'	(Added 1s to avoid zero cells)

x² = 14.3 with p < .001

Step 2: Rank algorithms via spearman rank correlation

Spearman rank correlation ρ =.9 and p < .001

- Learning merge sort via ILP
- Teaching merge sort
- Comprehension assessment
- Empirical results
- Remarks

Cognitive window for a machine-learned logic program P

Axiom 1: Hypothesis space to necessarily learn P must be small Humans have limited search ability in the hypothesis space

Axiom 2: P has "shortcuts" to reduce grounding cost Humans have limited capacity for mental computations

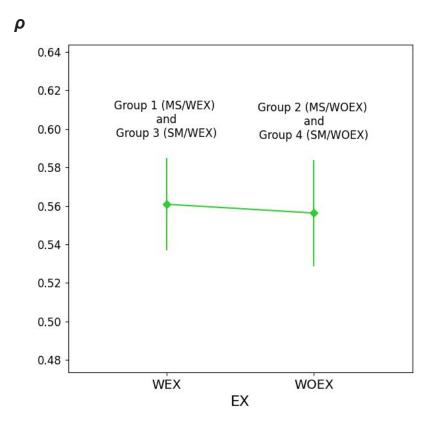
Merge-then-sort learning reduces total hypothesis space size

ρ EX 0.90 WEX Group 2 (MS/WOEX) WOEX 0.85 0.80 Improved performance Group 3 (SM/WEX) (supports Axiom 1) 0.75 Group 1 (MS/WEX) 0.70 0.65 Group 4 (SM/WOEX) MS SM CO

Explanations contain no "shortcuts" to merging

No performance differences

(supports Axiom 2)



Effects of Incremental learning with explanations

Group	Algorithm adapted	Is adaptation significant	Is performance improvement significant
Group 2 (MS/WOEX)	MS	\checkmark	X
Group 3 (SM/WEX)	DS	X	\checkmark
Group 4 (SM/WOEX)	IS	\checkmark	\checkmark

Increased application of quick sort like algorithms

=> higher performance than other approaches

Impact of explanations on performance

	Algorithm	Is adaptation	Is performance
Group	adapted	significant	improvement significant
Group1(MS/WEX)	QS	√	\checkmark
Group 2 (MS/WOEX)	MS	1	X
Group 3 (SM/WEX)	DS	X	\checkmark
Group 4 (SM/WOEX)	IS	√	\checkmark

Explanations contextualise the binary selection concept

(quick sort, dictionary sort)

Impact of incremental curriculum on strategy adaptation

Group	Algorithm adapted	Is adaptation significant	Is performance improvement significant
Group 2 (MS/WOEX)	MS	\checkmark	Х
Group 3 (SM/WEX)	DS	X	\checkmark
Group 4 (SM/WOEX)	IS	\checkmark	\checkmark

Incremental curriculum helps reduce hypothesis size for learning

divide-and-conquer algorithms (quick sort, merge sort)

- Learning merge sort via ILP
- Teaching merge sort
- Comprehension assessment
- Empirical results
- <u>Remarks</u>

Learning merge sort is a **challenging** task

Concluding remarks

While we took a **minimalist** approach,

- teaching logic programs can lead to **remarkable re-discoveries**
- incremental learning and explanations had a **USML potential**
- results supported the **cognitive window**

Future work

- Beyond ILP and noise-free framework
- Two-way learning via **behavioural cloning**
- Curricula and optimisations for human discovery

Imperial College London

Lun Ai

Email: lun.ai15@imperial.ac.uk

Website: https://lai1997.github.io/

Linkedin: https://www.linkedin.com/in/lun-ai-46481a128/